我们在高斯噪声的假设下使用最小的角度回归(LARS)算法来研究多次测试和变量选择。已知LARS制造分段仿射溶液路径,改变点称为Lars路径的结。我们的结果的关键是在Lars选定的变量上有一定数量的结合形式的结缔组织的确切联合法的表达,即Lars结的所谓的选择后联合法。数值实验表明了我们的研究结果的完美契合。本文提出了三个主要贡献。首先,我们在噪声水平可能未知的情况下,建立在常规设计案例中输入模型的变量测试程序。这些测试程序被称为广义$ T $ -Spacing测试(GTST),我们证明它们具有精确的非渐近水平(即,I.,I型错误被完全控制)。这延长了(Taylor等,2014)的工作,其中间距测试适用于连续结和已知方差。其次,我们在一般设计案例中介绍了一个新的精确多个假阴性测试,当噪声水平可能未知时。我们证明,该测试程序具有一般设计和未知噪声水平的完全非渐近水平。第三,我们在正交设计假设下确切地控制了虚假的发现率。提供了Monte Carlo模拟和实际数据实验,以说明我们在这种情况下的结果。基于递归函数,我们介绍了基于递归函数的Lars算法等效制定。
translated by 谷歌翻译
Over the past decade, neural networks have been successful at making predictions from biological sequences, especially in the context of regulatory genomics. As in other fields of deep learning, tools have been devised to extract features such as sequence motifs that can explain the predictions made by a trained network. Here we intend to go beyond explainable machine learning and introduce SEISM, a selective inference procedure to test the association between these extracted features and the predicted phenotype. In particular, we discuss how training a one-layer convolutional network is formally equivalent to selecting motifs maximizing some association score. We adapt existing sampling-based selective inference procedures by quantizing this selection over an infinite set to a large but finite grid. Finally, we show that sampling under a specific choice of parameters is sufficient to characterize the composite null hypothesis typically used for selective inference-a result that goes well beyond our particular framework. We illustrate the behavior of our method in terms of calibration, power and speed and discuss its power/speed trade-off with a simpler data-split strategy. SEISM paves the way to an easier analysis of neural networks used in regulatory genomics, and to more powerful methods for genome wide association studies (GWAS).
translated by 谷歌翻译
Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.
translated by 谷歌翻译
个性化的纵向疾病评估对于快速诊断,适当管理和最佳调整多发性硬化症(MS)的治疗策略至关重要。这对于识别特殊主体特异性疾病特征也很重要。在这里,我们设计了一种新型的纵向模型,以使用可能包含缺失值的传感器数据以自动化方式绘制单个疾病轨迹。首先,我们使用在智能手机上管理的基于传感器的评估来收集与步态和平衡有关的数字测量以及上肢功能。接下来,我们通过插补对待缺失的数据。然后,我们通过使用广义估计方程来发现MS的潜在标记。随后,从多个培训数据集中学到的参数被结合起来形成一个简单的,统一的纵向预测模型,以预测MS在先前看不见的MS的人中随着时间的推移。为了减轻严重疾病得分的个体的潜在低估,最终模型结合了第一天的数据。结果表明,所提出的模型有望实现个性化的纵向MS评估。他们还表明,与步态和平衡以及上肢功能有关的功能(从基于传感器的评估中远程收集)可能是预测MS随时间推移的有用数字标记。
translated by 谷歌翻译
关于使用ML模型的一个基本问题涉及其对提高决策透明度的预测的解释。尽管已经出现了几种可解释性方法,但已经确定了有关其解释可靠性的一些差距。例如,大多数方法都是不稳定的(这意味着它们在数据中提供了截然不同的解释),并且不能很好地应对无关的功能(即与标签无关的功能)。本文介绍了两种新的可解释性方法,即Varimp和Supclus,它们通过使用局部回归拟合的加权距离来克服这些问题,以考虑可变重要性。 Varimp生成了每个实例的解释,可以应用于具有更复杂关系的数据集,而Supclus解释了具有类似说明的实例集群,并且可以应用于可以找到群集的较简单数据集。我们将我们的方法与最先进的方法进行了比较,并表明它可以根据几个指标产生更好的解释,尤其是在具有无关特征的高维问题中,以及特征与目标之间的关系是非线性的。
translated by 谷歌翻译
ICECUBE是一种用于检测1 GEV和1 PEV之间大气和天体中微子的光学传感器的立方公斤阵列,该阵列已部署1.45 km至2.45 km的南极的冰盖表面以下1.45 km至2.45 km。来自ICE探测器的事件的分类和重建在ICeCube数据分析中起着核心作用。重建和分类事件是一个挑战,这是由于探测器的几何形状,不均匀的散射和冰中光的吸收,并且低于100 GEV的光,每个事件产生的信号光子数量相对较少。为了应对这一挑战,可以将ICECUBE事件表示为点云图形,并将图形神经网络(GNN)作为分类和重建方法。 GNN能够将中微子事件与宇宙射线背景区分开,对不同的中微子事件类型进行分类,并重建沉积的能量,方向和相互作用顶点。基于仿真,我们提供了1-100 GEV能量范围的比较与当前ICECUBE分析中使用的当前最新最大似然技术,包括已知系统不确定性的影响。对于中微子事件分类,与当前的IceCube方法相比,GNN以固定的假阳性速率(FPR)提高了信号效率的18%。另外,GNN在固定信号效率下将FPR的降低超过8(低于半百分比)。对于能源,方向和相互作用顶点的重建,与当前最大似然技术相比,分辨率平均提高了13%-20%。当在GPU上运行时,GNN能够以几乎是2.7 kHz的中位数ICECUBE触发速率的速率处理ICECUBE事件,这打开了在在线搜索瞬态事件中使用低能量中微子的可能性。
translated by 谷歌翻译
许多微体系式优化为深度神经网络解锁了巨大的处理能力,从而促进了AI革命。随着这种优化的精疲力尽,现代AI的增长现在是通过培训系统的性能,尤其是其数据流动的。我们没有专注于单个加速器,而是研究了全系统规模的大规模培训的数据移动特征。基于我们的工作量分析,我们设计了HammingMesh,这是一种新颖的网络拓扑,以低成本提供高的带宽,并具有很高的工作计划灵活性。具体而言,HammingMesh可以支持具有两个并行性的两个维度的深度学习培训工作的完整带宽和隔离。此外,它还为通用流量的高全球带宽提供支持。因此,HammingMesh将为未来的大规模深度学习系统供电,并具有极端的带宽要求。
translated by 谷歌翻译
基于最大元素间间距(IES)约束(MISC)标准,提出了一种新型的稀疏阵列(SA)结构。与传统的MISC阵列相比,所提出的SA配置称为改进的MISC(IMISC),显着提高了均匀的自由度(UDOF)并减少了相互耦合。特别是,IMISC阵列由六个均匀的线性阵列(ULA)组成,可以由IES集确定。IES集受两个参数的约束,即最大IE和传感器数。也得出了IMISC阵列的UDOF,并且也分析了IMISC阵列的重量函数。拟议的IMISC阵列在对现有SAS的UDOF方面具有很大的优势,而它们的相互耦合保持低水平。进行模拟以证明IMISC阵列的优势。
translated by 谷歌翻译
人工智能使在各个领域的问题上实施了更准确,更有效的解决方案。在农业部门,主要需求之一是在始终了解农作物所占据或不占领的土地,以提高生产和盈利能力。传统的计算方法需要手动收集数据,并在现场亲自收集,从而导致较高的人工成本,执行时间和结果不准确。目前的工作提出了一种基于深度学习技术的新方法,该技术与常规编程相辅相成,以确定人口稠密和人口不足的作物区域的面积。我们认为作为案例研究是厄瓜多尔种植和收获甘蔗中最知名的公司之一。该策略结合了生成的对抗神经网络(GAN),该网络在天然和城市景观的航空照片数据集上进行了训练,以改善图像分辨率;卷积神经网络(CNN)在甘蔗地块的航空照片数据集上训练,以区分人口稠密的农作物区域;以及以百分比方式计算区域的标准图像处理模块。进行的实验表明,航空照片的质量有显着改善,以及人口稠密的农作物区域和未吞噬的作物区域之间的显着差异,因此,耕种和未经耕种的地区更准确。所提出的方法可以扩展到可能的害虫,杂草植被,动态作物发展以及定性和定量质量控制的检测。
translated by 谷歌翻译
在进化多目标聚类方法(EMOC)中,已将各种聚类标准应用于目标函数。但是,大多数EMOC并未提供有关目标功能的选择和使用的详细分析。旨在支持eMOC中目标的更好的选择和定义,本文提出了通过检查搜索方向及其在寻找最佳结果的潜力来分析进化优化中聚类标准的可采性的分析。结果,我们证明了目标函数的可接受性如何影响优化。此外,我们还提供有关eMOC中聚类标准的组合和使用的见解。
translated by 谷歌翻译